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ANATYTICAT, TETERMINATION OF LOCAL SURFACE HEAT-TRANSFER
COEFFICIENTS FOR COOLED TURBINE ELATES
FROM MEASURED METAT, TEMPERATURES

By W. Byron Brown and Jack B. Esgar

SUMMARY

Anglytical methods for the determinetion of local wvalues of
ocutside and inside heat-transfer coeffliclents and effective gas tem-
peratures from turblne-blade-temperature measurements were developed.
Temperature-distribntion equations are derived for typical turbine-
blade configurstions at the central section when the wall thickness
is uniform, at the leading-edge section, and at the treiling-edge
sectlon. The equations have the same general form for ell sections
of the blade, but the blade configuration et the location where the
deta measurements are taken affects the evalustion of some terms in
the genersl equation.

Procedures for applylng these analytical methods to experimen-
tally measured blade-metal temperatures are presented. Data are
presented for the leading end trailing edges of a symmetrical water-
cooled blade to illustrate the validity of the methods for those
portions of the blade.

In addition to the application to turblne blades, the methods
cen be applied to any heat-transfer spparatus heving g profile that
cen be approximated by the shepes discussed.

IRTRODUCTION

The development of a sound basis for the design of cooled tur-
bines is dependent on knowledge of the inside and outside heat-
transfer coefficients for turbine blades. Average heat-transfer
coefficlients can be determined for any particular blade configuration,
but 1t appears infeasible at present to obtain a correlation of sverage
coefficients that is sulteble for all blade configurstions at all tem-
perature ratios and all velocity distributions. The fundsmental
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boundary-layer and heat-transfer theories are therefore being studied
at the NACA Lewls laboratory as a means of predicting local heat-
transfer coefficients for any given set of flow conditions. These
studies will elimlnate the necessity for experimental work on every
conceivable blade shape.

In order to verify and to extend these theoretical studies,
local heat-transfer coefficients around the periphery of a limited
number of turbine blades must be determined over a wlde range of
flow conditioms,

Three methods were proposed for obtzining these coefficlents:
(1) boundary-layer surveys using e hot-wire enemometer, (2) boundary-
layer surveys using an optical interferometer, and (3) enslytical
solutions using measured turbine-blade temperatures. Considerable
progress has been made in the development of operating techniques
for the hot-wire anemometer and the interferometer, but some prob-
lems must still be solved. The third method is probably the best
means presently avallable. A development of analytical solutions
is presented herein for calculating local values of outside- and
inside-convection hest-transfer coefficients from experimental data
obtained at steady-state conditions from the measured temperatures
of turbine blades having a known thermal conductivity.

METHODS COF ANALYZING HEAT-TRANSFER DATA TO OBTAIN LOCAL
CONVECTION COEFFICIENTS AND EFFECTIVE GAS TEMPERATURES

The quentity of heat transferred per unit ares by convection
Prom e gas stream toc a solid surface can be expressed as the product
of the surface heat-transfer coefficient and the effective tempera-
ture dlfference between the gas and the surface. For one-dimenslonal
heat flow, this same quantity of heat willl be conducted through the
wall of the solid and can be evaluated by multiplying the thermal
conductivity of the wall material by the temperature gradient in the
wall. If the inside of the wall is convection-cooled by a fluid, the
heat transferred can also be expressed as the product of the inside-
surface heat~transfer coefficient end the effective temparature 4if-
ference between the inside surface snd the coolant. By using this
reasoning, a heat balance can be set up so that the inside and out-
side heat-transfer coefficients can be calculated from a known tem-
perature difference between two known locations in the wall heving
& known thermal conductivity.
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The temperature-distribution equations for any wall configura-
tion where the heast flow is one dimensional can be reduced to the
following form (Symbols are defined in appendix A and equations are
derived in sppendix B.):

tg - by = D(tg - tg) (1)
and . )
hy = X -l (2)
L )™
te - Ty

where

ty and 'by wall temperatures at two specific locations lying in
Girection of heat flow

tg wall temperature any place in line of heat flow
(usuelly teken as either ty or ty)

r proportionality factor that is function of wall con-
Piguration, location of temperature meesurements
tx and ty, and retio of outside heat-transfer
coefficient hy to wall thermel conductivity kg;
can be mathematically expressed and experimentally
determined '

t and il proportionality factors that are functions of wall con-

figuration, location of temperature measurement tB!
well thermal conductivity, eand ratio of outside heat-
transfer coefficlent to waell thermal conductivity;

can be methematically expressed and evaluated by use
of ratio hi/kp calculated from experimental deter-

minstion of T

The mathematical expressions for . I', {, and 1 are relatively
simple for a simple shape such as a wall of wnlform thickness, but
they become more complicated for walls defined by concentric circles
or for rectangular- or trapezoldal-shaped fins. Mathematical expres-
sions for shapes other than those mentioned have not been derived.
For a given configuration and thermocouple locetion, T, kpl, and

kpn can be methematically evaluated as functions of hi/ky and
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plotted over the range of ht/kB that can be expected in experi-
mental investigations. This fact greatly simplifies the use of
these quantities.

1347

From equation (1)} it can be seen that if tx, ty, and te
are known from experiment, the value of I' 18 easily calculated.
The quentity ht/kB can then be obtained for & mathematically deter-
mined curve of I' as s function of ht/kB. For a known value of the
thermal conductivity kp, the outside heat-transfer coefficient hy

is then also known. The values of hi/kp and kp can then be used
to evaluate ; and 17, and if the coolant temperature t, 1s known

from experiment, the Inside heat-transfer coefficlent h4 can be
calculated from equation (2).

Frequently the effective gas temperature teg 1s unkrown end
will also have to be evaluated from experimental investigations.
In order to evaluate tg, & series of experimental data points must
be obtained for a constant outside heat-transfer coefficient hy, -

From equation (1), if ty -ty 1s plotted against ty for a constant
value of I', the intercept on the tx-axis will be te (this 1s the
case where tx- ty = 0) and the slope of the plotted line will be

-, By using this method it is possible to determine both hi (from
"P) &nd ten

It is often mofe convenient to write equation (1) in the form

t t t
—E%':'_Z = r@ - _}.) (3)
3 tg |
where tg 1s an observed ges temperature, an@
t
1 = t_e (4:)
g

From equation (3), if (tx- ty)/tg is plotted againmst tx/tg,
the intercept on the tx/tg-axis will be {1 and the slope will
again be -~I. The effective gas tempersture is then calculated from
the value of {2 by use of equation (4), and the.outside heat-transfer
coefficient is determined from the slope -I

Sometimes measuring the temperature at twe points in the wall .
is impossible. If only one wall temperature +tg 15 known, the
temperature-distribution equation for determining the outside heat- .
" transfer coefficient cen be written



L7t

NACA RM ESOFO9 5

tp - tg = D(tg - t¢) (5)
or

tB = 1"c tc

— %5 - "@ - ?g') (8

For the cases where the temperature gradient in the metal could
be measured by means of two thermocouples, the term I' was a function
of hi/kp and the blede dimensions. TFor the case with one wall-
temperature measurement, however, I is also a function of the inside
heat-transfer coefficient h;. Consegquently, the method of applying:
equation (5) or (6) to experimental dsta is different from the method
used for equations (1) and (3). The procedure is rather complex and
hes been utillzed for a uniform wall thickness only; it is explained
in detail in the section entitled "Application of Heat-Transfer Equa-
tions to Experimental Data."

The tempsrature-distribution equations used for all these ana-
lytical methods are based on & total outside-surface heat-transfer
coefficient that is a combination radiation and convection coefficient,
Correctlions can be made to this total heat-transfer coefficlent for
radlgnt-heat transfer o obteln a true convection coefficient.

These methods of calculating heat-transfer coefficients and
effective gas temperatures cen be applied to any epparatus where the
heat flow is one dimensional end the heat transfer is through a shape
that can be spproximated by the simple shapes discussed herein. The
central section (with uniform wall thickness), the leading-edge sec-
tion, and the trailing-edge sectlon of most turbine blades can be
epproximated by simple shapes so that these methods of analysls can
be used to determine local wvalues of inside snd outside heat-transfer
coefficients and effective gas temperatures.

Central Section of Turbine Blade

Equetions are presented for blades having a uniform wall thick-
ness between the leading-edge and trailing-edge sections for plain
hollow blades as shown in figures 1(a) and 1(b). Analyses for the
central sections of other blade configurations have not been verified
and therefore will not be presented here. The derivations for all
equations are glven in eppendix B.

Case for measurable wall-temperature gradient. - In order to
use this method, the wall temperature must be known at two polnts
located in the line of heat flow. ’
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The heat flow through the blade wall is assumed normal to the
blade surface, and the surface curvature is assumed small enough
that the wall can be trested as a flat plate. With the substitution
of temperatures t1 and t2 at the locations shown by small circles

on figure 1l(a), equations (1)} and (3) take the form

tp - tg = I(tg - t7) (7)
and
ty - ty g
tg P@ ) EE) ®)
where
];E (89 - 83)
r=-2 (9)

1+-h—'-t-(€-5]_)
kp

The dimensions &3, 82, sand B are shown in figure 1(a)

The values of §{ and 7 in equation (2) are

X
§=1‘1—B B—E+s-az) (10)

and X
- -§+'a') (11)

Case with one tempersture measurement in blade wsll. - The
temperature~distribution equation for the case with one thermocouple
in a wall of uniform thickness can be written

tp = to =Dty - ) (5)
or
tg - t¢ 1..@ 'bc> (
—————— - — 6)
tg tg
where

hy (kg + & by)

= = (12)
kB(ht + hi) + & hthg

The dimensions & and & are shown in figure 1(b).

1347
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As previously mentioned, I' is a function of ht/kB and hy
as well as of blade conflguretion and thermocouple location. In
order to meintain I' constant, the term hj in equation (12) should
be replaced by a quaniity that can be maintained at a constant walue.
In general, the inside heat-transfer ¢oefficient is proportional to
the coolant flow reised to some power if the coolant temperature is
constant, that is

hi = C wcn (1‘3)
Equation (12) now becomes

ht(kB + Séwcn)

T'= —— = (14)
kp(ht + Cwe ) + B hCwe
Equation (14) can also be written
1-T _ pfc Ec) 8C (
= —— b — ] = 15)
wcn (ht kp kp

The application of equations (5), (6), and (15) to experimental
heat-transfer data will be dlscussed later.

The value of the inside heat-transfer coefficient can be obtained

from equetion (2) where
k —_
g____l.(_B..;.s-) . (16)

n=-‘;-—3<£b—+-g> (17)

Leading-Edge Section of Turbine Blade

The heat 1s assumed to be transmitited from the gas stream
through the blade at the leading edge to the coolant along a sector
having an included angle df, as shown in the cross-sectional view
of - the leading-edge sectlon in figure 1(c), where thermocouples 3
end 4, indicated by small clrcles, lie in & direct line between the
stagnation point on the blade surface and the coolant passage. The
equation for the temperature distribution at the leading edge can
be written
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t3 - tg = I(te - t3)
or
ts - by _ I'( __’°_§)
tg tg
and
P, 3
I - B 4
14+ r;zt loge 5?
where

r radii as shown with subscripts on figure 1l(c)

The values of { and 7 1in equation (2) are

ry ( kg

To
o et e T

end

Trailing-Edge Section of Turbine Blade

(18)

(19)

(20)

(21)

(22)

A cross section of the trailling-edge sectlon of most turbine

bledes can be very closely approximated by a trapezoid, a rectangle,
or & conbination of trapezolds and rectangles. Temperature distribu-

tions have been determined for rectengular and trapezoidal cross

sections where the heat flow is assumed to be one dimensional.
lvetions are. given in appendix B for trailing-edge sectlons composed

of the following shapes:
1. Trapezoidal

" 2. Rectangulaer

Der-

1347
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3, Combination of one trapezoid and one rectangle
4, Combination of two trapezoids

Equations for I‘,- 4 s, and 7 are given for each of the shapes.
Trapezoidal trailing-edge section. - By referring to the trap-

ezoidel trailing-edge section on figure 1(d) for thermocouple loca-
tions and dimensions, equations (1) ard (3) can be written

ts - tg = I(te ~ t5) (23)
and
te - ts
5% _pla. _) (24)
tg ( tg
where
N, - N
r'=-6_ "5 (25)
N5

The velues of { and 1 1in equation (2) are

N
=3 (26)
and
_E
n1=F (27)
where
N = %—féi];[ﬂl(ih) Jo(18) + 1J1(481) iHo(iE)] (28)
I =15(ity) B (1) - By (1) 135 (ikp) (29)
3

B =

P [ma(tt) Jolitz) + 13y (1ky) 3Ho(its)] (30)
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n 1l - tan o
¢ -_-..ZBV(Y"‘Z 71) *T (_2—1-,371_&")

B2 o it
kg sin o
and
T, - T
a = tan"l 3 1
2L
Ns evaluated for y = yg
Ng eveluated for y = yg
T
51 evaluated for y + '74—1 =0
gz evaluated for y =1L

¥, Tl’ 1'3, L shown on trailing-edge section sketch for trap-
ezoldal shape (fig. 1(d))

Where there are no subscripts on N and £, they can be
evaluated for either thermocouple in the trailing-edge section. The
resulting value of ky 1in equation (2) should be the same in either
case., )

Rectargular trailing-edge section. - For the rectangular trailing-
edge section as illustrated by the trailing-edge sectlion shown in com-
bination with a trapezoidal section in figure 1(e), equations (1) and
(3) are written

t5 - t7 = Nt - ts) (31)
and

ts - %7 ts

T = r‘@ - Es_) (32)
and

cosh tp(y—, + {— 1‘1) - cosh CP(ys + E Tl) (33)

cosh ¢P(y5 + ;’_,f 'l'l)

1347
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The values of §{ and n in equation (2) are

cosh ®\y + g‘l’l)

= (34)
kp® sinh 9Ly + 5 7))
and )
) e cosh CP(LZ + {. Tl) s5)
kg® sinh CP(LZ + % Tl)
whers

2hy
? = NigH

The dimensions y, T, and I are shown in figure 1(e).
Combination trapezoldal snd rectanguler trailing-edge section. -

For rectangular portion 4 of the trailing-edge section shown on
figure 1(e), the velue of I' is the same as in eguation (33).

cosh de(y-? + E 1'1) - cosh CPd_(ys + .;‘_: Tl)

P=Iy= (332)
a e
cosh L‘Pd(ys + -z- Tl)
For the trapezoidsl porition b,
or
7 - % t7
tg rb@ " Ig (37)
and
I (18, o) - Ttk o) + S| 1E (5, o) - 1H (18, )
o o%be o\, 7! + & | Follty,s) - il 7

b To(ihp,7) + Z 1H,(1ky, )

(38)
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where

az _ ZBbgiJl(iﬁb,l) * b1 q’dE’a”h ®s(Lp + 1 71_)]‘70(1%,1)

aK 2Bb231(i§ b’l) ~tp,1 %a [ta.nh cpd(Lz +7 -rl):] 1H, (i&b,l)
(39)
ty = ey + m (Tom )
op = tan”™ -1 -—3?;—1——]:

and £p,1 1s evaluated for y = O. The subscript b refers to
portion b of tralling-edge section.

The velue of Iy, 1in equation (38) is a function of both
ht,b/kB and ht,d/kB' For the most accurate solution to the egqua-

tion, it is necessary to evaluate d2/dK in equation (39) using the
value of ht,d/kB obtained for the rectangular portion of the trail-
ing edge by use of equation (33a). It is doubtful that this much
trouble is warranted, however, because the terms in equation (38)
involving dZ/dK are small compared with the other terms in the
equation so that the error caused by assuming ht,q = ht,b would

be negligible. By using this assumption, Pb can be evaluated as

a function of ht,b only.

The method for determining the value of hy at the trailing-
sdge where the section is composed of two different portions is so
insensitive to the metal-temperature measurements that the analytical
solution is not believed to be worthwhile end thersfore is not
presented. The determination of hy is much more accurate at the
central portion of the blade where the shape factor is simpler. The
evaluation of the outside coefficient hy is considered to be quite
accurate at the trailing-edge section, however. Because such a small
portion of the coolant passage is next to the trailing-edge section,
the evaluation of the inside heat-transfer coefficient at that por-
tion of the blade is of minor importance,

Combinstion of two trapezoldal portions in trailling-edge sec-
tion. - For trapezoidal portion d4' on figure 1(f),

1347
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tg - t7 = Dgr(tg - t5) (40)
or
- t '
E5_ttl = Pd'@ - _§) (41)
g tg
and
N; - Ng
I‘dl = NS (42)
where
£t
N = ﬁ [Hl(iid:’l) Jo(1bgy) + 157 (qr 1) :LHo(iEd:i]
at =B '
B::2 = ___hb___
da kB sin C!.d'l
1l - tan age
idl = 2Bdt V(Y + -z- Tl) + Tl Q_z__.tm_r‘ﬁ?‘_)
and
1 To =T
C[,d' = tan 1 —ga—l
For trapezoldal portion b' on figure 1(f),
t7 - tg = Dpr(te - ©7) (43)
or

t—’ - ts ' t—’ .
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and
_ Jolihyr g) - Jo(ibye o) + —Eﬁo(lﬁb' ) - iHo(iﬁb'ﬁ)]
(45)
where
4z _ GiJl(igbt,l) + SJO(iEb',l) (46)
&' T GE (T, 1) - STy (1kpr, 1)
139 (18 qr 1 )1B(1E4r »)
and
Bd' Eb' iJl(igd.',l) El(igd',z)
S BB s [ R, 7 o - e,
Also
1l - tan '
Epr = ZBbw’\/Y + Ty Q?hi—-ﬁ;.’?_)
and
e = ten-l "'32£1"'2
where

Eb',s evaluated for ¥ Ys
5'b',7 evaluate® for y =y, (y7 =0 for this case)

0

§b:’1 evaluated for ¥y

1547
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Ed',z evaluated for y = Lg

T
€qr,1 evaluated for y + _Zl =0

A method of evaluating h; for this section of the blade is not
presented for reasons previously discussed.

Radiation Corrections

The effects of radlation have been neglected up to this point
in the analysis so that the local ocutside heat-transfer coefficients
obteined are combinstion convection and radistion coefficlents. In
most cases, the heat transferred by radiation is relatively small
(ebout 3 to 10 percent of the heat traensferred by convection for
uncooled surface temperatures up to 1500° F), but it is still of
sufficient magnitude to reguire evaluation.

The combination convection and radistion coefficient has bhesn
defined s hy; 1f the convectlon coefficlent is designated hg
and the radiation coefficlent, by, the following equations may be
written:

"

by = By + by (47)
and
Qt Q + Qr
Bt = AB,o(te - tB) AB,o Y (48)
where

Q¢ total heat-flow rate to blade
Q hest-flow rate to blade by convection
Qy heat-flow rate to blade by radiation

The heat transferred by radiation is glven in reference 1 as

Qp = 0.173 Ap & (100 - ):I (49)
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therefore
B 4]
=) - ()
hr ) 0. 173F ._(-1—0_0- - \360/ | (50)
te - tB
where
F = X (51)
l + (_]_'- - ) + Aw Q—l—- - 1)
F €w AB,O €x

The actual wvalue of the convection heat-transfer coefficient hg

cen ?ow be calculated for each gas temperature from equations (47)
end (50).

A comprehensive discussion of radiation is unwarranted here.

For a preclse evaluation of radiation, it is necessary to accurately

determine the geometry fesctor F end the eumissivitieas. A method

of determining geometry factors by the use of a mechenical integrator

on large-scale models 1s suggested by Hottel in reference 2. For

most epplications with cooled turbine blades, the metal surfaces will

be tarnished end soot covered go that the emmissivity will be high,
probably ranging from 0.80 to 0.95 for nearly sll materials.

APPLICATION OF HEAT-TRANSFER EQUATIONS TO EXPERIMENTAL DATA

There ere two methods of applying the heat-transfer eguations
to experimentel heat-transfer datas. The firat method, which 1s the

more direct and probably the better method, depends upon a knowledge of

the effective gas temperature, The usual method of determining the
effective gas temperature 1is calculation by use of a known blade
recovery factor. A discussion of recovery factors 18 contained in

reference 3. When the effective gas temperature, the measured bleade

tempersture at two positions in the direction of heat flow, and the
metal thermesl conductivity are known, the outside and inside heat-

trenafer coefficients can be calculated directly. The second method
can be used if the effective gas temperature is unknown, but data are
necessary from heat-transfer runs where the heat-transfer coefficient
on the outside surface of the blade 1s maintained constant while the
amount of heat transfer to the blade is varied by allowing the coolant

flow and either the roclant temperature or the gas temperature to
change.

-
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The second method cennot be used to determine the effective
gas temperature with as great an accuracy as is possible using s
local blade recovery factor. The method is therefore best applied
when other means of determining effective gas temperature fail, such
g8 the cgse where temperature greadients in the gas stream mske meas-
uring the stream temperature at the blade impossible. ~

Case with Known Effective Gas Temperature and
Measurable Wall-Temperature Gradient

The effective ges temperature, or the gas temperature effecliing
heat trensfer, is deflned as the adisbatic surface temperature in
reference 3; that is, the effective gas temperature is the tempera-
ture that the surface would assume if it were thermslly insulated
so that there would be no heet transfer. The local effective gas
temperature can be celculated from the totdl gas temperature, the
total pressure, and the local static pressure if the local blade
recovery factor is known. For simple shapes such as flat plates,
tubes, and wedges, anelytical solutions for the recovery factor are
aveilable (reference 3). For more complex shapes, such as turbine
blades, recovery factors can be determined from adigbatic tests of
the blades. Experimental work at the Lewls laboretory has shown
that turbine-blade recovery factors are usually quite close to 0.90
for 21l Reynoclds numbers and for local Mach numbers from 0.4 to 1.0.
The effective gas tempersture is then

te = t + Ag(T - %) ' - (52)

or
-1

tg =T 11 - (L -4Ag)j1 -(%j_;— (52a)

In actual practice for subsonic flow, the value of the effective
gas temperature tg Wwlll Dbe

0.98 T <tg €T

so that in many cases the error in assuming tg = T will be neg-
ligible., The size of the error will be dependent on the temperature
difference te - tyx. A more complete discussion of this error will

be found in the sectlion entitled "Accuracy Considerations.”
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BEquation (1) can be written

-t
r=f£___2 (1a)

te = tx

so that I' can be evaluated directly from the effective gas tenm-
perature and the measured blade temperatures. For a given config-
uration and given thermocouple locations, I' can be mathematically
represented as & function of hi/kg so that the heat-transfer coef-

ficlent hy can be easily calculated. The inside heat-transfer
coefficlent hy cen then be evaluated from

1
= 2
hy N CERZ (2)
te - tp
vhere § end 1n are obtained from mathematicelly determined curves
of kBﬁ and kpn plotted against ht/kB for the given configura-

tion and thermocouple location.

Case with Unknown Effective Gas Tempsrature and
Measurable Wall-Temperature Gradient

The method of applicetlion for this case 1s considerably more
complex than for the case where the effective gas temperature is
known. As prevliously steted, a constant heat-transfer coefficlent
must be mainteined on the outside surface of the blade for a seriles
of experimental hest-transfer runs 1in order to utilize this method
of enalysis. If the coolant flow and the coolant temperature sre
allowed to vary.for & series of runs, the outside hest-trensfer
coefficlent can be held constant by maintaining the gas flow and
the gas tempersature constant. The values of inside and outside heat-
transfer coefficlents end the effective gas temperature can then be
obteined rather easily by use of equation (1)

tx -ty = I(te - tx) (1)

which can be solved by use of suitable plots. If tx - ty (ordinste)
is plotted against tx at a comstant value of I’ (constant hi/kB)

over a range of blade-metal temperatures, the slope of the resulting -
line will be -I' and the intercept on the ty-axis will be the :

1347
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effective gas temperature to. The vealue of the local ocutside heat-
transfer coefficient hi can now be calculated from the equation
for I' for the section of the blade in question.

In order to obtain a sufficient mmber and e sultaeble range of
temperatures tx and ty to determine the line in the plot of

tx - by against tg, it is necessary to vary both the coolant flow
end the coolant temperature over as wide a range as possible.

After determining ht and te, the value of the local inside
heat-transfer coefficient hs; can be determined from equation (2).

The values of § and 1 are eveluated as functions of ht/kB for
the section of the blade. : :

If no provision is made for varyling the coolant temperature,
the ges temperature must be varied. The outside-surface heat-transfer
coefficient is apparently affected by the ratio of gas temperature to
blade temperature; therefore it may be necessary that the weight rate
of gas flow be varied at the ssme time the gas temperature is varied
in order to meintain a constant value of outside-surface heat-transfer
coefficient. By making heat-transfer runs over a large range of gas
flow and gas temperature, the effect of the ratio of gas to blade
temperature c¢an be determined so that dats for a constant value of
the outside-surface heat-transfer coefficlent can be obtained for
the required plots.

This effect can be evaluated 1f the varietion In average con-
vection coefficients with temperature ratic is assumed to be the same
as the veriation in local convection coefficients. This assumption
will be wvalid if the point of transition from laminsr to turbulent
boundery-layer flow on the outside surface of the blade remains at
the same place for all temperature ratios. Evidence exists indi-
cating that the amount of laminerity is a function of temperature
ratio unless the pressure gradient is strong enough to maintein &
completely leaminar boundary layer. Where the pressure gradient would
indicate that the boundary layer is either almost completely laminar
or almost completely turbulent, the following procedure can be used
Por evaluating the effect of temperature ratio on the outside heat-
transfer coefficient: g

1. The sverage outside heest-transfer coefficient - ht,av cen
be calculated from the eguation

WAty

°p,c
ht,aV" Aolte - tB,av)
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vhere

tg = 0.98 tg (assumed value of 2 = 0.98 as en approximation)

Then bht,qv can be plotted against the weight rate of gas flow wg

for various measured gas temperatures tg as shown in figure 2(a),
Plot I. . . )

2. From Plot I, a cross Plot can be made as shown In fig-
ure 2(b), Plot II, to obtain tg as a function of wg for various

values of ht, av.

3. Local blade temperature ty end coolant temperature t. can

be plotted egeinst wg for the various measured gas temperatures at
a constant coolant flow, as shown in figures 2(c) and 2(d), Plots III
and IV, respectively.

Prom Plots II, IIT, and IV, it 1s possible to correlate the
welght rate of gas flow and the temperatures of the blade, coolant,
and gas for given constant values of hy gy and coolant flow. These

plots are required for obtaining temperatures to use in additional
plots to determine outside and inside heat-transfer coefficlents and
effective gas temperatures.

By use of equation (3)

ke il 8 r@-%) (3)

tg g

it can be seen that if (tx - ty)/tg (ordinate) is plotted against
tx/tg for a wide range of gas temperatures and cooclant flows at a
constant value of ht,gv, the slope of the resulting line will be
-I' and the intercept on the tx/tg——axis will be £2. The values
of ty, tx, e&nd tg are obtalned from graphs like Plots II and
ITI of figure 2.

The value of the local outside heat-transfer coefficient hy

can be obtaiqed as before from the equation for I’ for the section
of the blade in question, and the effective gas temperature is cal-
culated from

te = Stg (42)
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Tn order to simplify the evaluetion of hy from a known value
of I', it is convenient to plot I' as a function of ht/kB for

the perticular section of the blade, as previously explained.

The value of the local inside heat-transfer coefficient hjg
can be determined from equation (2) where the value of t¢ 1is
cobtained from Plot IV of figure 2, ht and te s&re determined from
equaetion (3), and the values of { and 1 are evaluated as functions
of ht/kp for the blade section.

Case with Known Effective Gas Temperature and
One Temperature Measuremsnt in Blade Wall

Equation (5) can be written

tm - '
T, - £,

go that I can be evelusted directly-from the effective gas tem-
perature, the coolant temperature, end the blade temperature. Because
I' is a function of both hjy and bt/kp, a plot is necessary to :
determine the outside heast-transfer coefficient hy. The data for

this plot must be obtained from & series of experiments where the
outside heat-trensfer coefficient is maintained constant while the
coolant flow is varied, which varies the inside heat-transfer coef-
ficient. The value of I' is then calculasted from equation (5a) for
each experimental point. The mathematicel expression for T’ 1s

hi(kp + & hi)

T "G, B v S B _
which can be written
1-T c . & 5C
= M=+ =2)- =2 (15)
Wl (h'b kg/ kg

where hj was replaced by chn. The exponent n can be evaluated
Prom calculstions of the product of the average inside coefficient
and the coolant-passage area for the varisble coolant-flow runs.
(The aree need not be evaluated as it is constant.)
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cP c wcAtc

; (53)
tp,av~ tc

Aihi,av =

If Aihi,av is plotted against w, on logarithmic coordinates,
the slope of the resulting line is the exponent n. ’

It can be seen from equation (15) that if (1 -T)/w.™ is plotted

against @' for varisble coolant-flow runs, the intercept on the
Iaxis of the resulting straight line is fr (for (1 - ) /w2 = 0).

Substitution of this value of I''* into equation (15) ylelds

bty __ D' (54)
kg & - 85It

from which the value of hi can be caslculated.

The local Inside heat-transfer coefficient hi 1s then cal-

culated from equation (2) using equations (16) and (17) to evaluate -

and 1n, respectively.

This method of determining heat-transfer coefficients using only -

one blade-metal-tempersture measurement, however, is not completely
satisfactory in all cases. The method works best for blades made of
metals having low thermal conductivi’ies. When the blade metal is
thin and the metal thermal conductlvity is high, obtaining an accu-
rate evaluation of the outside coefficient ht becomes difficult,
although the ratio of inslde to outside coefficients can be quite
accurately eveluated. If the local imside coefficlent hj can be
obtained from measurements in the coolant passage, the value of hy
can then quite easily be obtained from equations (5a) and (12).

Case with Unknown Effective Gas Temperature and
One Temperature Measurement in Blade Wsll
When the effective gas temperature is unknown, the experimental

values of local heat-transfer coefficient and effective gas tempera-
ture are obtained from e graphical solution of equation (6)

tp - ' te
2 - PG? - ?§> | (6)
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as illustrated in figure 3. In Plot I (fig. 3(a)), (tg - tc)/tS
is plotted sgsinst tc/tg for various constant values of coclant
flow (and thus constant h;), where tc, tg, and tB are obtained
from plots like those 1In figure 2 for a constant valus of ht,av'

The slope of each line is -I" and the intercept of all lines
on the tc/ts-axis is {). The effective gas temperature te can

now be cslculated from
te = ntg (43)

The graphical solution to equation (15) is illustrated in Plot IT
(rig. 3{(b)). The velues of I' for corresponding values of W, are
obteined from Plot I (fig. 3(&)). The straight line representing the
plotted values of I' s&ageinst (1 P)/wcn on Plot IT can be extended
to intercept the I'—axis at a point denoted by I'*, as previously
explained. The value of ht can then be calculated from equa-
tion (54). The local inside heat-transfer coefficient hj is then
calculated from equation (2) in the same manmer as previously
explained. Again, this method is not completely satisfactory for
all cases, particularly when the metal thermsal conductivity is high.

ACCURACY CONSTDERATIONS
In the experimental determination of heat-transfer coefficients
from cooled turbine blades, sources of error exist in the experi-
mental measurements and in the method of anelysis that must be:
minimized. These posslble sources of error are:
1. Assumption of one-dimensionel heat transfer

2. Effect of approximations to blade configuration

3. Effect of verietions of thermal conductivity in direction
of hest flow

4, Effect of variation in heast-transfer coefficient along blade
in chordwise direction

S. Effect of teqperature gradient in trailing-edge section

6. Accuracy required in locating thermocouples
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7. Effect of thermocouple hole on heat-flow path
8, Accuracy of tempersture measurement

Each of the preceding items is discussed in detail.

Assumption of One-Dimensional Heat Transfer

Errors in the assumption of one-dimensional flow are negligible
except near the rim on a cooled turbine, as shown in references 4 and
5. The lower the metal thermel conductivity, the smaller the errors
involved. The metals used in nearly all turbines do have a low con-
ductivity. In statlc-cascade work, some means of thermally insulat-
ing the ends of the blades is usually used so that spanwise tempera-
ture gradlents are minimized even at the blade ends.

The temperature distribution through the cross section of e
typical water-cooled turbine blade was computed by relaxation methods
(reference 6) for two metal thermsl conductivities and for both a
constant and a varisble outside heat-transfer coefficient. In all
cases, the isothermel lines showed that the heat flow was very close
to being one dimensiongl at the leading and trailing edges. It was
also found that the tempersture distribution in the trsiling-edge
section of the blade could be accurately determined by & calcula-
tion of the temperature distribution through a wedge of comparable
dimensions.

At the central section (midchord) of a blade with a uniform
wall thickness, the heat flow will be one dimensionasl except at the
ends of the coolant passage next to the leading- and tralling-edge
sections. At such locations, where the flow is known to be two or
three dimensional, these analytical methods should not be used.

The assumption of one-dimensional heat flow is valid when
reasonable care is used in locating thermocouples in reglons away
from end effects.

Effect of Approximations to Blade Configuration

As previously mentioned, the temperature distribution in the
trailing-edge section can be accurately determined by a calculation
of the temperature distribution through g wedge (trapezoldal trailing-
edge section) of comparable dimensions (reference 8). Conversely, if

-~
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the tempersture distribution is known (defined herein by two tem-
peratures at two known locations), the cutside heat-transfer coef-
ficient can be accurately determined., The same assumption of one-
dimensional heet flow 1s used for a rectangular tralling edge, and
therefore the same accuracy should be cbtained. Tralling-edge cross
sections can usuelly be approximated very closely by some combination
of rectangles and trapezoids, sc that errors due to shepe approxima-
tions can be made negligible.

At the leading edge of the blade, the accuracy will depend upon
the configuration. If the leading edge 1s well rounded, relazation
calculations indicate that the shape approximation of two concentric
arcs will give results accurate to about 10 percent. The applica-
tion of the leading-edge analysis is less accurate than the applica-
tion of analyses for the central end trailing-edge sectlons becatse
the shape approximation is not completely walid.

The assumption that the central portion of the blade can be
approximasted by a flat plate is accurate for large radii of curva-
ture. For small radii of curvature at the central portion of the
blade, more accurate results can be obtained by use of the leading-
edge equations for arcs of concentric circles., The leading-edge
equation approaches the central-section equation as the radlus
approaches infinity. The approximate percentage error involved in
using the flat-plate equation for determining I' can be determined
from the expression

<]

Error(percent) & 100 T (55)

where
s wall thickness
T radius of curvature of outside surface of blade

O

For e given value of I', the calculated heat-transfer coefficlient hg
is always higher for the flat-plate eguation.
Effect of Variations of Thermal Conductivity
in Direction of Heat Flow
The analytical methods were derived with the assumption thsat

the section of the blade in question was of a material having a uni-
form thermal comnductivity. The thermal conductlivity of a material
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is a function of its temperature. There must be a temperature gra-
dient to have heat flow; therefore the thermal conductivity varies
in the direction of heat flow. Analyses have been made to evaluate
the effect of variable thermel conductivity caused by temperature
gradients. For a typical high-temperature-metal alloy with the
thermal conductivity given by

k = 2.763 X 10767 4+ 1.246 x 10~3 (58)

the temperature distribution was calculated for temperature differ-
ences as high as 130° F between two points in the metal. The error
caused by using an average metel temperature for evaluating the
thermal conductivity was negligible.

If the blade is laminated or coated on the inside or outside
so that a nonuniform thermal conductivity is caused by the use of
different materials, & great deal of care will be required in inter-
preting the results of the snalysis. The heat flow can still be
measured as long as the temperature measurements are made in a pilece
of material of constant thermal conductivity, but the heat-transfer
coefficients obtained from the analysis will contain the effects of
convection, radiation, and conduction through the material having a
thermel conductivity different from the material in which the tem-
perature measurements are made.,

Effect of Variation in Heat-Transfer Coefficient
along Blede in Chordwise Direction

At the leeding edge of the blade where the heat-transfer coef-
ficient changes rapidly with the distance from the stagnation point,
the determination of the outside hest-transfer coefficient will be
inaccurate unless the thermocouples used to measure the temperature
gradient lie in a direct line between the stagnation point and the
coolant passage. If the leading-edge section is long and relatively
sherp, the results obtalned from the analysis will be of very doubtful
quallty. The analysis method 1s based on a short, well-rounded
leading-edge section.

At the central and trailing-edge sectioms of the blade, the
variation in heat-transfer coefficlent 1n a chordwise direction is
usually gradual so that its effect will be quite small. At the cen-
tral portion of the blade the effect will be negligible and at the
trailing-edge section the calculated heat-transfer coefficient will
be an average value for the blade surface between two thermocouple
stations. Tke closer these stations are together, the smaller will
be the effect of variation in heat-transfer coefficient.
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Effect of Temperature Gradlent in Trailing-Edge Section

A decrease ocecurs in the magnitude of local heat-transfer coef-
ficients as the surface tempsrature of a flat plate increases in the
direction of filuid flow for a leminar boundery leyer (reference 7).
Thig decrease in heat-transfer coefficient is caused by the formation
of a cool boundary leyer that serves to insulate the surface from the
gas stream and thus decreases the amount of heet transfer.

This decrease in heat trensfer can be defined by a decrease in
effective gas tempersture rather than s decrease in heat-transfer
coefficient; but it is believed that defining the effective gas tem-
perature using a recovery factor is a better procedure. The tem-
perature gradient should then cause a decrease in heat-transfer
coefficients glong the trailing-edge sectiom.

By using the analytical method incorporating a known effective
gas temperesture, this effect of decreasing heat-transfer coeffi-
cients can be experimentelly determined by placing the thermocouple
stations close together. By using the method where the effective
gas tempereture and the hest-transfer coefficienis are simultene-
ously determined, the effective gas temperature would probably be
ebnormally low because of the effect of the cooled boundary layer,
and the heat-transfer ccefflcient would be higher than for the case
using a known effective gas temperature. The calculated rate of
heat transfer to the blade would be the same In either case, but
cere should he exercised in evaluating the results obtained by the
two different methods,

Accuracy Required in Locating Thermocouples

The distance between any two thermocouples used for messuring
‘a temperature gradient should be known as atcurstely as possible
beceuse the errors ir the resulting data are in direct proportion
to the error in the measurement of the distence between the loca-
tions where the temperature measurements are taken. Because ther-
mocouples are usuelly located inside drllled holes, it is advanta-
geous to have relatively shallow holes in order to reduce the amount
of drift in the drilling operation as much as possible.

The location of the thermocouple Jjunction in the hole is alsc
of prime importance. The thermocouple Junction should therefore be
as small as possible and the junction itself should be ir a hole of
reduced diameter to insure the proper location of the junction. For
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differential thermocouple readings, the Junctlion must also be elec-
trically Insulated from the blade unless the blade is used as one

of the elements of the thermocouple. The insulation should be thin
to reduce the thermocouple time lag end it should he of such & nature
that the location of the Junction is slso known. In generel, errors
resulting from improper thermocouple location and installation can
be reduced by placing the thermocouples as far gpert as possible
consistent with other requlremente of the installation and by placing
the thermocouples In small shallow holes.

Effect of Thermocouple Hole on Heat-Flow Path

An analysis has not been made to evaluate the effects of holes
placed in the heat path similar to those holes in which thermocouples
are placed. If the holes are small compared to the wall thickness
and if the metal beyond the thermocouple Jjunction is solid, the
errors caused by the holes are believed to be negligible,

Accurecy of Temperature Measurement

Accurate measurements of the temperature difference between
two known locations in the blade metsl are necessery. In most cases
the difference between the two observed sbsolute temperature readings
1s not accurate enough. The method of measurement that has been
found to be most successful is the use of a differential thermocouple
circuit and the measurement of the potential from the circuilt with a
sensitive potentiometer and a light-beam galvanometer. Frequently,
use of the blade metal as one of the thermocouple elements is con-
venient because differential readings can be made with the thermo-
couple wire bonded to the blade metal. The single-wire thermocouples
cen also be placed in smaller holes. In order to use this method of
temperature-difference measurement, an accurate calibration of tem-~
perature ageinst electromotive force must be made of the metals used
to form the thermocouple. .

The necessity for the high degree of accuracy required in the

differentisl temperature measurements between two locations in the
blede metal can be illustrated by equation (la):

r-=-% (1a)
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The outslde hesi-transfer coefficlent 1s almost a linesr func-
tion of I' for the range encountered in most investigations so
that the coeffitient is directly proportional to tx - ty and
Inversely proportional to %e - tx. The temperature difference
tx - Ty can range from less than 1° to over 30° F depending on the
blade-metal thermal conductivity and the dlstance between the loca-
tions where the measurements are made. A 1° error in reading this
temperature difference can therefore amount to an error of from
3 to 100 percent in the heat-transfer coefficlent. The temperature
difference te - tx may range from 100° to 1000° F or higher, how-
ever, so that considerably larger errors can be tolerated in its
measurement,

EXPERTMENTAT, RESULTS

Preliminary heet-transfer runs were made to determine how suc-
cessful these methods of analyzlng heat-transfer dsta are in actual
practice. Tor the sake of simplieity, a single symmetrical water-
cooled blade having s chord and span of 6 inches was mounted in a
test section with contoured wells as shown In figure 4. With this
wall arrengement, the pressure distribution found on a typicel reac-
tion turbine blade can be simulated. A series of heat-transfer runs
wereomade with heated air at temperatures ranging from 200° to
1000° F.

The leeding edge, the trailing edge, and the central sectiouns
of the test blade were of shapes that could be used with the
temperature-distribution equations presented herein. Multiple ther-
mocouples were placed in the line of heat flow at the leeding and
trailing edges and single thermocouples were placed in the wall at
the central portion of the blade. The circles on the blade sketch
Indicate the locations of the temperature measurements. The blede
used for these heat-iransfer determinations was made of aluminum,
which has a relatively high thermal conductivity; because of its
high .thermal conductivity, the deta obtained from the single ther-
mocouples 1n the blade walls could not be used to evaluate local
heat-transfer coefficients at the central portion of the blads.
Experimental data are therefore given for only the leading and
trailing edges.

Tralling-Edge Section

Heat-trensfer data ocbtained from the temperatiure measurements
in the trailing edge are shown in figure 5. The scatter in the
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experimental dsta points 1s quite small and the data fall in small
clusters. Each cluster represents a different gas temperature. In
this case, datas were taken at 200°, 400°, 600°, 800°, and 1000° F.
Varlable coolant-flow points are shown at each gas temperature. The
equation of the experimental line was determined by the method of
least squares and the intercept £) on the abscissa was 0.954. With
this value of ‘), the local effective gas temperature can be cal-
culated at any of the observed gms temperatures in the series of
runs represented on this plot. .

The slope of the line representing the date is -I', which in
this case is equal to -0,0477. A straight-line approximation of
equation (25) for the trailing edge of this blade is :

hy % 0.3775 T (25a)

From this approximate relstion, the resulting local value of the
outside heat-transfer coefficient at the trailing-edge section is
0.01802 (Btu/(°F)(sq f£t)(sec)). The average outside coefficient
for the entire blade was slightly higher than this wvalue, which
serves as a rough check on the magnitude of the trailing-edge
coefficient. )

If the effective gas temperature is calculated from the local
blade recovery factor end the local Mach number, the calculated heat-
transfer coefflcients are lowsr than for the case where the effec-
tive gas temperature 1s calculated from the Iintercept on figure S.
The calculation for the quantity of heat transferred is the same in
either case, however, as long as corresponding values of heat-transfer
coefficient and effective gas temperature are used in the calculation.
Because it is usually easler to celculate the effectlive gas tempera-
ture from a blade recovery factor, outside heat-transfer coefficients
were also calculated at each gas temperature using this value of
effective gas temperature.

The recovery factor for this blade at the tralllng edge was
0.90 at a Mach number of 1.0. The Mach number was maintained con-
stant at 1.0 for this series of runs. Use of these values in egua-
tion (52a) results in

te = 0,983 T (52b)

A plot of ocutslde heat-transfer coefflcient against gas tem-
persture where the effective gas temperature 1s defined by equa-
tion (52b) is shown in figure 6. The date points shown were cbtained
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from arithmetlically averaged blade temperatures at each gas temper-
sture. All the experimental data used in figure 5 were also used
to obtain Pigure 6. The ocutside heat-transfer coefflicient increases
as the gas temperature increases and is from 2.5 to 16 percent less
then the constant coefficient obtained from the plot on figure 5.

Leading-Edge Section

Heat-transfer data obtained from the temperature messurements
in the leading-edge section of the blade asre shown in figure 7 for
gas temperatures from 200° to 800° F. The scatter in the data for
the leading-edge section of the blade is considerably greater than
that for the trailing-edge section (fig. 5). There are two explana-
tions for this scatter: (1) The change in local heat-transfer coef-
ficient with distance from the stagnation point is very rapid. In
this blade, the heat-transfer coefficient was not measured directly
at the stagnation point and eny stream fluctustions that might cause
the stagnation point to shift would materislly affect the value of
the local outside heat-transfer coefficient. (2} In addition to
this condition, the coolant flow near the leading edge of the blade
was unstable and caused the blade temperatures to be unstable slso.
In a previous discussion, small errors or fluctuations in the blade-
tempersture measurements were shown to affect the accuracy of the
data; the effect is illustrated here.

At the leading edge of the blade, the value of 1 was found

. to be 0.940. The straight-line spproximation of equation (20) for

the leading-edge section of this blade is
hy =1.738 T (20s)

By using this relastion, the local heat-transfer coefficient at the
leading-edge section was found to be 0.0441 (Btu/(°F)(sq ft)(sec)).

Theory for the leading edge of cylinders indicates that the
heat-trensfer coefficient at the leading edge should increase with
incresse in gas tempersture for a constant weight rate of gas flow.
The plot of heat-transfer data in figure 7 indicates that this trend
is also present here because the data points could be best repre-
sented by a curved line. The date obtained at a gas temperature of
1000° F were not included in figure 7 because of this trend. The
data points st gas temperatures from 200° %o 800° F can be approxi-
mately represented by a straight line snd were presented in this
figure for illustrative purposes only.
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For a more accurate determinatlon of the heat-transfer coeffl-
clents, the leading-edge-section date were also calculated using
effective gas temperatures calculated from the recovery factor and
the Msch number. The Mach number at the leading edge was O0.37 and
the local recovery factor was 0.87, so that from equation (52a)

te = 0.997 T . (52¢)

A plot of hest-transfer coefficient against gas temperature at
the leading edge of the blade where the effective gas temperature
is defined by equation (52¢c) is shown in figure 8; for reference
the heat-transfer coefficient obtalined from figure 7 1s shown as
& dashed line.

The heat-transfer coefficient at the leadling edge is dependent
to a very large degree on the leading-edge configuration. The coef-
ficient 1s lowest for a clrcular section, Increases materially as
the section becomes elliptical, and becomes infinite for the leeding
edge of a flat plate. The heat-transfer coefficlents represented
by the solid line on figure 8 lle between those calculated from
theory for a circular section and an elllipticel section with a major-
to minor-axls ratio of 2. Although this fact cannot be used as an
accurate check on the heat-transfer date at the leading edge, it
shows that the data are in the right renge and the trend of varila-
tion in gas temperature is verified.

CONCLUDING REMARKS

The analytical methods for the determination of local heat-
transfer coeffliclents and effective gas temperatures present a con-
venient method for obtaining these dats and the actual application
of the equations to experimental date is relatively simple. The
epplication of the equations for the various sections of the blade
is made in a similar manner for each section, greatly Iincreasing
their utility.

Measuring the temperature gradient in the metal with two or
more thermocouples whenever possible is advantageous because the
analysis methods using one thermocouple are considered less accurate
and considerably more difficult.
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A desirable feature of these analytical methods is that they
are not limited to turbine blades alone but can be used to determine
local heat-transfer coefficients and effective temperstures for many
other types of apparatus where the heat is being transferred through
metal in a shape that can be spproximated by the shapes discussed
herein. ' '

Lewis Flight Propulsion Laboratory,
Nationsl Advisory Committee for Aeronautics,
Cleveland, OChio.
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

blade surface area, sgq ft

P
kg 8in o
constant
specific heat at constant pressure, Btu/(1b)(°F)

differential

quantity in equation for tralling-edge analysis
(equation (30))

radiation geometry factor
radistion geometry factor for gray surfaces
function

quantity in equation for trailing-edge analysis
(equation (46))

Hankel function of zero order
Hankel function of first order
heat-transfer coefficient, Btu/(°F)(sq ft)(sec)

guantity in equation for trelling-edge analysis
(equation (29))

d -1
Bessel function of zero order

Bessel function of first order
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K,K! constants of integration (function of hi/kg)

k thermal conductivity, Btu/(°F)(ft)(sec)

T length, ft

M Mach number

N quantity in equation for tralling-edge analysis
(equation (28))

n exponent

P total pressure, 1b/sq £t absolute

P static pressure, 1b/ sq £t absoclute

Q heat-flow rate, Btu/sec

q heat-flow rate per unit length, Btu/(ft)(sec)

r radius, £t

S quantity in eguation for trailing-edge anslysis
(equation (46})

T total temperature, °r

t temperature, °r

W weight-flow rate, 1b/sec

X constant of integration (function of ht/kp)

p el constant of integration (function of hg/kg)

¥ distance from trailing edge, ft (figs. 1(d) to (f))

Z,2' constants of integration (functioms of hy/kg)

trailing-edge wedge angle, deg

function of ht/kB, thermocouple location, and blade
configuration
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r' intercept on plot of (1-IV/w.," against I
(fig. 3(v))

V4 ratio of specific heats
& thermocouple location dimension, £t (fig. 1(a))
3 blade-wall thickness, £t (fig. 1(a))
€ emissivity
4 f1 (hy/kp, kg, and blade dimensions)
1 fo (hy/kp, kg, and blade dimensions)
e engle, radisns
A recovery coefficient
¢ = 2B V(y + —T + T(lz-t:zn
& = 2By «jy - 33:%252559)
T thickness, £t (figs. 1(d)} to (f))
2

Q - Te

tg
Subscripts:
av aversage
B ' blade
b trapezoidal portion of trailing-edge section composed

of trapezoid and rectangle (fig. 1l(e))
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'bl

dl

1,2,

37
first trapezoidal portion of trailing-edge section
composed of two trapezoids (fig. 1(f))
coolant

rectanguler portion of treiling-edge section composed
of trapezoid and rectangle (fig. 1(e))

second trapezoildal portion of trailing-edge sectlon
composed of two trapezoids (fig. 1(f))

effective; subscript used with symbol for temperature
to denote temperature effecting heat transfer

gas

inside blade surface

cutside blade surface

radiation

thermocouple

combination of radistion and convection
regdiating surface

local velue at some locstion

locel vaelue at some location different from location
of x

refer to thermocouple locations unless otherwise noted
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APPENDIX B

DERIVATION OF HEAT-TRANSFER EQUATIONS
Central Section of Blade
The heat flow through the blade wall is assumed normel to the
blade surface and the surface curveture small enough that the wall

can be treated as a flat plate. By reference to figure 1(b) for
symbols and dimensions, the following heat balance can be written:

k X
2 = hylte - o) = %1—3 (to - t1) = 5= (tB - 1) = hi(t1 - tc)

(B1)
where
ty, metal tempersture on outside surface of blade
tq metal temperature on inside surface of blade
tg metal temperature at distance & from coolant passage
The following equations can be obtained from equation (Bl):
knty + Shyt,
ty = B¥1 e tve (B2)
kB + 5ht
k'BtO -+ Bhitc
kp + Bhi
2.2 (B2)
E to -t

When to and ti are eliminated from equations (B2) to (B4),

_ hy(kg + 8hy) | ) 3
B - e = kp(hy + hy) + Bhghy (Fe - %o) (55)
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If T' is defined here &s

kp(hy + by) + Bhghy
then _
tg - te = Nty - &) (5)

The effective gas temperature te in equation (5} is defined

as the tempersture that the test blade would assume if there were
no heat transfer to or from the blade (reference 3). A blade recov-
ery factor AB that is a function of the blade configuration and

Mach number can be obtained, so that the effective gas temperature
can be determined from the equation

- 2
LIt

tg = T (Bs)

Similaxrly, the gas-temperature reading from a shielded ther-
mocouple placed in the gas stream ghead of the blade will be

1+ATL;_}.MIZ

tg =T RS (87)
7 Mp
where
tg observed gas temperature reading from thermocouple, °gr
T total gas temperature, OB
AT recovery factor for thermocouple
Mp Mach number et thermocouple
Ie
tg = th (4a)
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where £ 1is a constant of proportionality, from equations (BS),
(B7), and (4a),

q . [r+4s 2o f1 4 5t wt (=)
= B8
¥y = 1 2 - 1 2
1+ Ap I—= My 1+ Z‘E" Mg

In order to determine the effect of varistions in local Mach
numbers and recovery factors of the blade and the thermocouple,
values of {3 were calculated for Mach numbers from O to 1.0 by
use of values of recovery factors from 0.65 to 1.0. The maximum
variation in () with Mach number was about 2% percent.

Combination of equations (5) and (4a) and division by tgy yleld

tB'tc ( tc)
Bt _plo-.c (s)
tg g

For the case when two temperature measurements can be made to
obtain the tempersture gradient in the blade wall, as shown on
figure 1(a), temperatures t) and tp at corresponding distances

81 and &2 can be substituted into equation (BS), which results

in two equations. Subtraction of the equation involving t5; from
the equetion involving tq results in

t -tz Behy(8y - 8p)

= B9
te - tc  kp(hy + hy) + Bhyhy (z9)
Equation (B6) can slso be written
tq - t (kn + 8qhy)
1~ %  hylkg + &by (B10)

te = e kp(hy + hy) + Shyhy

Subtraction of both sides of equation (B10) from unity and com-
bination with equation (B9) to eliminate h; give

tl - tz = B_ (te = tl) (Bll)
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If I is now defined as

z—t' (89 - 85)
r = Bht (2)
1+-]5 (5- 81)

then equation (Bll) becomes
'tl - tz = I'(‘be - tl) (7)

Equation (BS) can be written

- 1 2
hy = (e ’Gc) (2)
/)"0
le - T3
where
k.
1 B =
L =={—+35 - 5) (16)
kg \Bt
and
1 (5% <
N =+ a) (17)
kp \t
If tp in equation (2) is replaced by t3, eguation (18)
becomes -
1 (58, =
== (= 5 -5 10
kg \By 2) (20)

Leading-Edge Section of Blade

Heat is assumed transmitted from the gas stream to the blade
coolant at the leading edge of the blade along & sector with an
included angle df, as shown in the leading-edge cross-sectlomal
view in figure 1(c). It is assumed that no heat is transmitted in
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8 direction normal to the sector path from the gas to the coolant;
this assumption has been verified by relaxation calculations for
well-rounded leeding-edge sections. The following heat-balance
equations cen now be written:

dg = (tg ~ t,)(r, d8)hy (B12)
dq = (tg - tc)(ri d8)hy (B13)
dtg
dq =r de kB T'i_; (314)
where
dq heat transferred along sector having included angle d8

per unit length normal to sector, Btu/(ft)(sec)

r,ry,¥, radli to concentric arcs of circles

tg blade tempersture et any point in sector, °r
ty inside-blade-surface temperature, °R

t outside-blade-surface temperature, °r

(o]

From equation (Bl4),

tp = E;dgd? logg Cr (B15)
Then
to =EB%§ loge Crg (B18)
and
ty = E%i@ loge Cry (17)

Subtracting equation (Bl7) from (Bl6) yields

dq = —=—— (to - ti) (B18)
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It is obvious thsat

to - ti to - ti

te - te - (te - Bo) + (By - B} + (%5 - &4) (59)

Combination of equations (B12), (Bl3), (Bl8), and (Bl9) yields

t, -t
t -k, = e ¢ (B20)
+ = +
To \BtTo BiTi
1oge -ITi'

Subtraction of equation (Bl7) from (BIS) and division by (B18) give

loge =
g -ty Ty

= (B21)
Yo = ®1 1lo 32
Ze Ty
When equations (Bl3) ard (B18) are combined,
ty -t = = (to - %4) (B22)
rihi 108e e}
T3
Combination of equations (B20) arnd (B22) results in
i< t, -t
ty - ¢ = B S (B23)
T k
r.h, log L1114 B 1 + L
i7i e ry ro \Btry hiry
loge ;;

From & combination of equations (B20) and (B2l), it is found that

1oge o~ £, - &

e (B24)

"Bt s To kg 1 1
loge — |1 + +
Ty To hiry hir;
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It is obvious that

tg - to = (tg - t4) + (B - tg5) (B25) 5
By combination of equations (B23) to (B25), -
k
B
log, — + .
tB - tC - Ee I‘i hiri (st)
T. -t = X
e ¢ logg 2 + —EE- + B

Ty BgTo  ByTy

If two temperatures tz and t4 are messured in the sector
at points 3 and 4 at radii rz end r4, these values can be sub-
stituted into equation (B26), which results in two equations - one
for each temperature. Subtracting the equation involving %4 from
the equation involving tz ylelds

roht g 'z
t - ¢ k e n,
St — = (B27)
¢ 1+ hy({-2 logg 2 + -2
ri hiri

Equation (B26) can also be written

r rz To
hy (=2 loge — +
ts - tC - t (kB I'i hiri (st)
tg - tg To rq Ty
: 1+ ht — 1083 —
kB I'i h.iri

Subtraction of both sidee of equation (B28) from unity and combina-
tion with equation (B27) give
r h'b : rz
ks e E,
Toby o (te - tz) (B29)

kg fe Ty

ts-t4=
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If I' is defined as

r Tz
1oge =

A 4 (20)

1 Tolt To

+ 1oge —_—

k.B I‘5

equation (B29) can be written

tz - tg = I(tg - tz) (18)

Combination of equations (18) end (4a) and division by tg yield
t, - t T
) (1)
23 . g
In order to determine the value of the inside heat-transfer

coefficient hy, both sides of equation (B26) are subtracted from
unity and the equation is rearranged to yield

1
hy =
1 I3 10 To e\ _Ti 1o ro kg
kg \"°%e T htro te g T kg %% T T g

1
ct

If § and n are defined as (830)
T k r
Y B )
.= (h'b— rg 1ok r) (z1)
end
I‘i kB rO
=5\ * loge 7, 22
n kB htro ge ri ( )

equation (B30) can be written

1 = £ L
C(————t:_t;>-n

(2)
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Trailing-Edge Sectlon of Blade

The trailing-edge cross section of most turblne bledes can be
approximated by a trapezold, a rectangle, or a comblnation of
trapezoids and rectangles. Heat-transfer equations are given for
each cass.

1347

Trapezoldsl trailing-edge section. - The temperature distribu-
tion in a trapezoidal trailing-edge section of a turbine blade is
derived in reference 4 and is given herein by the expression

te - tB _ hiN ~
te—tc I+hiE

(B31)
where

wet2
2B%ky

[Hluel) Jo(18) + 137 (187) iHo(it):] (28)

I= iJi(iEl) By (ik5) - By (18;) 139(if5) (29)

2321’; [EL(162) Jo(162) + 13 (2ky) 1Ho(ikz)]  (30)

gl E) D

g2 _ %

" kp sin a

»

B =

LY

Ts - T
tap-1 13 ~ 11
ZL

o =

’t —
gl evaluated for y +7 T, =0

§2 svaluated for .y = L

y,Tl,Ts,L shown on treiling-edge section for trapezoidal shape
(fig. 1(a))
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correction term in equation for § to account for
rounded end of wedge snd considered more accuraste than
T1/2 as given in reference 4.

Lalt
-
=

If two temperatures, t5 and tg, are measured in the trailing
edge at distences y; and yg, as shown on figure 1(d), these

values can be substituted into equation (B31l), which results in two
equations, one for each temperature. Subtraction of the equation
involving t5 from the equation involving tg leaves

Ng - Ng
tg - tg TT 8y
tg - Tt T (B32)

where N5 and Ng are evaluated at the positions where +t5 and
tg are measured. Replecement of tR by t5 end N by Ns in
equation (B31l) and combination with equation (B32) result in

Ng - Ng
-t = eme——— (t = ) (335)
t5 6 N5 e tS
If I’ is defined as
N. - K,
r--86_25 25
% (=)
equation (B33) becomes _
tg - tg = I'(tg - tg) (23)

Division of both sides of equation (23) by tg and combination of
the result with equation (4a) yield

tg - tg -t
_St = r@‘?) (24)
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Solving equation (B31l) for .hy yields

hy = T 1 (B34)
N(e_ _c)_E
T\%, - tg/ I
Letting
N
= = 26
t =3 (26)
and
B
n=73 (27)
results in a transformation of equation (B34) to
(2)

. 1
hy = t. -
t(=2—=)-n
1"e = tB
Rectangular trailing-edge section. - The temperature distribu-

tion in a rectangular tralling-edge section is glven in reference 4.
In the notation of thils report, the expression becomes

—Iicoshcpy+-1—t'r
Yo - tp _ kB 4 ?) (B35)
te - T © sinh oL "‘r) by h ( L )
8 + I + —= cos ZrT
Ptz + 1) + gL comn HTp + 2y

where

Lo,¥,T; shown on rectangular portion of trailing-edge section
sketch (fig. 1(e))

correction for semicirculer end of trailing-edge section

wia
-4
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e
® =\t

If two temperatures tg5 and ;7 are measured in the trailing
edge at distances y5 and ¥y, a&s shown on figure i{e), these

values can be substituted into equation (B35), resulting in two
equations - one for each temperature. Subtraction of the equation
involving t5 from the equation involving t; leaves

and

ts - t; 1y | cosh “P(Y‘Z + % Tl) - cosh QD(Y5 + ETI)] (536)
tg - to —cpkB sinh CP(Lg + % T:L) + hy cosh cP(I?_‘L I T'.L)

Replacement of tg by tg and y by y5 in equation (B35) and -
combination with equation (B36) result in

I

cosh Q’(y‘.l. +-E Tl) - cosh CP(FS +

cosh q(ys + -;—( 1'1)

1'1)

tg - tg = (te - t5)(B57)

By letting

cosh@’(y +£‘l’)-cosh‘~‘Py +15'r)
7 1 5 4 1
T = 4 (33)

h I
cos cp(ys + 3 Tl)

equation (B37) becomes
tg - tg = D(tg - t5) (31)

Division of equation (31) by tg and combination of the result with
equation (4a) yield

5 - % s
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Equation (B35) can be solved for hj, which results in

" =. cosh tp(y + — ( ) cosh CP(L + = Tl)
Xp® sinh q’(Lz x -rl) - %8/ k9 sinh CP(L + X Tl)
(B38)
By letting
_ coshCP(y + X7 )
- kP 5inh qo(lj + % 1'1) (34)
and
" e cosh CP(Lz + g— Tl) (35)

k]éCp sinh CPQ'.,Z + -ET]_)

equation (B38) becomes

ey,

Combination trapezoidal and rectangular treiling edge. - By
writing equation (B35) for tg and t7, equating the two expres-
sions, and solving them, the temperature distribution in the rec-
tangular portion of the trailing edge can be written as

cosh @(y + ;;_—r Tl) (B59)

cosh CPQ"'Z + g— T

teg - tg = (tg - tq)

where
tB temperature at any point in rectangular portiom.

te temperature at point where y = Lo = ¥7
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-

The temperature distribution for any trapezoidal shape is given
in reference 8, and in the notation of this report becomes

- tg = KJp(it) + ZiH,(1E) (B40)

The integration constants K and Z are functions of hj.
At the junction of the two portions of the tralling edge, the metsl
temperature and the heat flow must be contlnuous; therefore relatlons
between the integration constants can be written.

At the Junction, the blade temperature 1s t7; therefore

tg - t7 = KJo(1ky 1) + ZiHp(iby 1) (B41)

where

1l
o

to ,1 evaluated for ¥y

and

-2 l'bano:.b
€p = 2B Aly + T1 2tan%

-1 3 1
oy = tan~ _—_—21.1

For the heat flow to be contimuous s the following relation must exist:

kpht, o2 = kpha oo (Be2)

but A4y = Ag at the Junction where the subscripts b and d refer
to the portion of the treiling-edge section in figure 1(e).

Differentiating equations (B39) and (B40) with respect to ¥
and substituting the result in equation (B42) result in

op. 2
(te - t7) Pa tanhcpd(lxz + f Tl) = E;i;l |:— Kid1(ifp,1) + ZHl(iib,lﬂ

(B43)
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Temperatures tg and t7; at corresponding distances Is
and y; can be substituted into equation (B39), which results in

two equations. Subtracting the equation involving ts from the
equation involving t; results in

cosh P (77 + § 71) - cosh @4(75 + § T1)

ts - 't7 = (te - t7)
cosh ¥y (Lz + l_‘: 'rl)
(B44)
Equation (B39) can alsc be written
cosh @ (y + X7
a\s 4 1
tg = tg = (tg - tq) 4 ) (Ba5)
i

cosh de<]:.2 + Tl)

The rigorous solution to equations (B44) and (B45) is rather
complex. From equations (23) and (31) it cen be seen that the final
solutlions for the various shapes take on the general form

'tx - v = P(te - tx) (1)

where I' is a function of the blade dimensions, the end conditionms,
end the ratio hi/kp. .

The simplest method of solving equations (B44) and (B45) to get
them in the general form of equation (1) is to calculate the slope
1"d of a plot of tg - t; against tg. In order for the slope to

be constant it cannot involve hj. The slope of the line is
a(ts - tq)
dh
I S S
a a(ts)

dhy

(B46)

From equation (B44),

d(ts - tq) cosh ¢d(y7 + 72 Tl) - cosh tpd(ys + -2‘-: Tl) dt.,
dhy ) cosh CPd(LZ + E Tl) dhy

(B47)
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and from equation (B45),

I
dtg cosh EPd(ys + 3 Ty ) dty

= = (B8)
dhi  cosh de_(Lz + :15 Ty ) 9B
Then from equations (B46) to (B48),
cosh de(y7 + z ‘l’l) - coshcpd(ys + g- Tl)

—
cosh ':Pd(ys + I Tl)

For the trapezoldal portion of the trailing-edge section In
figure 1(e), the temperatures t7 and tg can be substituted into

equation (B4l), which results in two equations. Subtracting one
equation from the other and differentiatling yield .

a(t - t
__(%i_s_)_ = %‘i Jolidp, ) "'70(151:,7{‘*“%‘530(1%,6) 'ﬂo(iﬁb,'ﬂ]
(B49)
and
at
@, = - dy Jolibs,7) - G 1Holily,7) (850)
where

§-b’ g evaluated for ¥ = yg

E'b,? evaluated for y =y7 (y7 =0 for this case)

Division of equation (B49) by equation (B50) to cbtain the value
of the slope - b for the trapezoidsl part of the trailing edge
results in

_ Jo(bp,6) - Jolilp,7) + & [iHo(iEb,s) - iHo(iﬁbﬁ):l

Jolikp,7) + L 1Ho(itn,7)

b (38)
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The value of dZ/dK in equation (38) can be found from equa-
tions (B41l) and (B43) as follows:

When equeations (B4l) and (B43) are differentiated with respect

to by, 3
dtq
T - -552 Jo(ily,1) - ——; 185 (1€y 1) (BS1)

and

dt- dK

@, ¥y tenh vd(LZ + 7 Tl) ----i'b 1 [ iJ]_(iib 1) - Hl(igb 1)]

(Bs2)
where

gb,l evaluated for y = 0

Eliminetion of dt,/dh; yields .
2
ZBb :LJl(iEb,l) + §b,1 0] tanh CPd(Lz + f Tl):l Jo(iﬁb’l)

5 ,
2By By(ify 1) - £, ePa!—_-f'*'*:ﬂh Pa Lz + 5 "'1)] 1Hp(1fp,1)
(39)
Combination of two trapezoldal sections in treiling edge. -
The temperature distribution in the trapezoidal portion b' is given
in different form in reference 8 as

gz |
a&

te - tg = K'Jg(ifyr) + Z'1iBp(16y) (B53)
end in portion &' +the dlstribution is
te - tB = X'Jo(ifar) + Y'iHp(1ila+) : (B54)

where

K',Z2',X',Y! integration constants
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tan o,
Ebt—ZBb:/J;'I'T <2ta.nmb)

e tan-l T3 "~ T2
mb| tan 2]'_.1

by
i ‘\}m
1 tanmd,
b = /Jiy+—T)+T (Ztanmd,)

-1 T2 " T1

2Ly

Bag = .__ht— )
Qs kg sin ag:

Here again the integration constante are functions of hy -and
at the junction of the two traepezoidal sectlions the metel temperature
and heat flow must be continuous, The following relatioms between
the integration constents can be written:

Cfadl = ta.n

and

For temperature contimuity,
K30 (i o) + ZHEG(88y, 1) = X'95(1k,, ) + TraBy(iks, ,)
(B55)
end for heat-flow continuity,

d dtae
kphy -tl = kphar —5- . (BazZe)

Differentiating équations (BS3) and (BS4) with respect to ¥
and substituting in equation (B42sa) yield
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2
By
g ; E— K‘iJl(igb:,l) + Z'Hl(igb-,l)]
b',l
By:2
_ 74
= Ed' - f:— X'iJl(igdl,a) + Y'Hl(if,dn,z)]
»
where
A‘bl‘ = Ad_l
ﬁb',l evaluated for y =0
Edt,z eveluated for y = Lo

The equation for portion d4' is

tg - t7 = I'd-(te - ts)

(BS6)

(40)

From equation (38), the equation for Fd| can be written by

Inspection:

Ty

gy’
) Jo(igd‘,'?)_JO(igd',s).'- Xt [iHo(iEd','?) - iHo(igdc’s)]

Jb(ga',s) + g%; iBb(igdt,s)

where

Edn’7 evaluated for Yy = yq

it

gd',S evaluated for y = ¥yg

(B57)

Y, X integration constants for portion d' +that replace integra-
tion constents K and Z for portion b in equation (38)
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The equation for daY '/ dX' can also be written by inspection
from equation (39). If the rectangular portion d were removed
from portion T (fig. 1(e)), the quantity (Lj + -g T1) in equa-

tion (39) would be equal to zero and the equation would reduce -to

13, (1€ )
az. 1355 1
& = E(IE, , o (392)

Because nothing is asttached on the rear of portion 4' on
figure 1(f), the equation for day'/dx' is

art iJi(iﬁda,l)
ax' El_(if,d:,l) (B58)

wvhere

T
gd',l evaluated for y + 5 T; =0

1 - tan agz:

i d.)

= 2B +--‘[')+T [
gdf at /J(y 4 "1 1 (2 tan gt

A correction for the rounded end is included in equation (BS8)
but not in equation (39a).

and

Substitution of equation (B58) into (BS57) and notation of the
definition of N given in equation (28) yield

N; - Ny

Do =
at g

(42)

When the seme process as before is used to obtain an equaetion
for portilon B! in the form

t-[ - ts = r"bl (te - tT) (43)
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IR —-[ﬂr (1, g) - 1H (3t o) ]

Jb(iib' 7) + E5 1By 1y 7)

(45)

The value of dz'/dK' can be_dbtained from equations (BSS) and
(B56) by differentiating and grouping to yileld

?—mK-;' Jo(iﬁb. )+ gﬁi iHo(iib. 1)— dllj_ Eo(igd: )+ iHO(igdl ]

and

it

(B59)
- %%i 133 (18ye 1) + %%i By (18pr 1)
QX;_‘__[_ 134 (it ) + &xt g (1t } Eﬁl'_z_l (B6O)
ahy 1v+5at,2 axt —1v+edr,2 ]

Bpr 841,1

Elimination of dX'/dh; from equations (B59) and (B60) and
substitution of the value of dY'/dX' from equation (BS8) yileld

GiJl(if,-b, ,1) + SJO(ig‘bl ,1)

az' _
dxt GHl(igb',l) - SiHo(igbl,l) (48)
where
1Jy (1€ qr 1) 1Bn(it 51 o)
G = JO(igdt,a) + = glfigdlﬂi) 4,2
and

Bduzﬁb:,

= Bb'zgd',l

J(ikgr,1) Ep(itgr 2)
B (18qr 1) ) iai(igd"zi]
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LPST

(a) Central section with two temperature
measurements. '

(b} Central section with one temperature
measurement.,

(c)} Leading-edge section.
{a) Treiling-edge asection - traperoidal shape.

(e) Trailing-edge section - combination of
trapezoidal and rectangular shapes.

(f) Trailing-edge section - combination of
two trapezoldal shapes.

Flgure 1. - Shape of turbine-blade gections for onse-dimensional heat-transfer analysis.
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Figure 2. - Illustrative plots to indicate method of determining turbine-blade
and coolent temperatures for constant outside heat-transfer coefficiert.
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Pigure 3. - Illustrative graphical sclution of
temperature-distribution equation for central
portion of blade using one thermocouple.
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Figure 4. - Water-cooled blade used for experimental determination of local hept-trensfer
coafficlents and effective gas temperstures.
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Figure 5, - Experlpental determination of loca) outside-surface heat-transfer coefficient
and effective gas temperature at trailing edge of wvater-cooled blade,
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Figure 8. - Comparison of cutside-surface heat-transfer coefficients at trailling edge of
blade obtained from figure S with those calculated where the effsctive gas temperature
was based on recovery factor.
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Figure 7. - Experimental dstermination of local cutside-
surface heat-transfer coefficient and effective ges
temperature at leading edge of water-cocled blede.
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Figure 8, - Comparison of outside-surface heat-transfer coefficients gt lemding edge
of blade obtained from figure 7 with those caslculated where effective gas tempera-

ture was based on recovery factor..
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